ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Gary L. Thinnes, Richard L. Moore
Nuclear Technology | Volume 87 | Number 4 | December 1989 | Pages 1036-1049
Late Paper | TMI-2: Decontamination and Waste Management / Heat Transfer and Fluid Flow | doi.org/10.13182/NT89-A27695
Articles are hosted by Taylor and Francis Online.
The Three Mile Island Unit 2 accident resulted in the melting of ∼47% of the reactor core and the relocation of ∼15% of the core onto the lower head of the reactor vessel. The severity of the accident has raised questions about the margin of safety against rupture of the reactor vessel lower head in this accident since all evidence seems to indicate no major breach of the vessel occurred. Scoping heat transfer analyses of the relocated core debris and lower head have been made based on assumed core melting scenarios and core material debris formations while in contact with the lower head. The structural finite element creep rupture analysis of the lower head using a temperature transient that was judged to be a challenge to the structural capacity of the reactor vessel is described. This evaluation of vessel response to the imposed temperature transient has provided insight into the creep mechanisms of the vessel wall, a realistic mode of failure, and a means by which margin to failure can be evaluated once examination provides estimated maximum wall temperatures. Suggestions for more extensive research in this area are also provided.