ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Gary L. Thinnes, Richard L. Moore
Nuclear Technology | Volume 87 | Number 4 | December 1989 | Pages 1036-1049
Late Paper | TMI-2: Decontamination and Waste Management / Heat Transfer and Fluid Flow | doi.org/10.13182/NT89-A27695
Articles are hosted by Taylor and Francis Online.
The Three Mile Island Unit 2 accident resulted in the melting of ∼47% of the reactor core and the relocation of ∼15% of the core onto the lower head of the reactor vessel. The severity of the accident has raised questions about the margin of safety against rupture of the reactor vessel lower head in this accident since all evidence seems to indicate no major breach of the vessel occurred. Scoping heat transfer analyses of the relocated core debris and lower head have been made based on assumed core melting scenarios and core material debris formations while in contact with the lower head. The structural finite element creep rupture analysis of the lower head using a temperature transient that was judged to be a challenge to the structural capacity of the reactor vessel is described. This evaluation of vessel response to the imposed temperature transient has provided insight into the creep mechanisms of the vessel wall, a realistic mode of failure, and a means by which margin to failure can be evaluated once examination provides estimated maximum wall temperatures. Suggestions for more extensive research in this area are also provided.