ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Richard R. Hobbins, Malcolm L. Russell, Charles S. Olsen, Richard K. McCardell
Nuclear Technology | Volume 87 | Number 4 | December 1989 | Pages 1005-1012
Late Paper | TMI-2: Decontamination and Waste Management / Nuclear Safety | doi.org/10.13182/NT89-A27692
Articles are hosted by Taylor and Francis Online.
The behavior of melts in severe accident sequences affects the nature (composition and fission product inventory) of the debris released from the vessel upon lower head failure in unmitigated accidents and the coolability of debris at various stages in managed accidents. Core melting progressed further in the Three Mile Island Unit 2 (TMI-2) accident than in any of the severe core damage experiments that have been conducted since the accident, and, therefore, TMI-2 represents a valuable source of information that extends into later phases of core melt progression, including melt relocation into the lower plenum. Examination and evaluation of melts within the TMI-2 reactor vessel indicate that melts can form uncoolable geometries in the core but they can also break through the surrounding crust, massively relocate into the lower plenum, and fragment upon interaction with water resident in the lower plenum to form a rubble bed of coolable geometry. The chemistry of melts, particularly the oxygen potential, affects fission product chemical form and, therefore, retention in the melt. The chemistry also determines interactions of the melts with reactor pressure vessel components.