ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Yasushi Nomura, James L. Anderson
Nuclear Technology | Volume 87 | Number 4 | December 1989 | Pages 912-925
Technical Paper | TMI-2: Decontamination and Waste Management / Nuclear Safety | doi.org/10.13182/NT89-A27685
Articles are hosted by Taylor and Francis Online.
The refill phenomena occurring from 200 to 217 min of the Three Mile Island Unit 2 accident were analyzed by using measurement data including the reactor coolant system (RCS) pressure and the pressurizer level. At 200 min, the high-pressure injection (HPI) system began to inject water into the RCS, resulting in a primary system depressurization due to steam condensation; and the pressurizer water drained into the reactor vessel, increasing the liquid level at the core. It is believed that the core was completely covered by water by ∼207 min, when the pressurizer level decrease and the RCS depressurization stopped. Continued HPI resulted in increasing hot-leg water levels; and the pressurizer level began to increase at ∼210 min, when water reached the level of the surgeline entrance to the hot leg. Analysis of the refill assuming uniform liquid levels in the RCS fails to predict the observed phenomena. A set of equations describing the refill phenomena and accounting for compression of noncondensable gases has been derived from theoretical considerations, and solutions for water levels throughout the RCS have been obtained to correctly predict the phenomena occurring during the refill period.