ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Yasushi Nomura, James L. Anderson
Nuclear Technology | Volume 87 | Number 4 | December 1989 | Pages 912-925
Technical Paper | TMI-2: Decontamination and Waste Management / Nuclear Safety | doi.org/10.13182/NT89-A27685
Articles are hosted by Taylor and Francis Online.
The refill phenomena occurring from 200 to 217 min of the Three Mile Island Unit 2 accident were analyzed by using measurement data including the reactor coolant system (RCS) pressure and the pressurizer level. At 200 min, the high-pressure injection (HPI) system began to inject water into the RCS, resulting in a primary system depressurization due to steam condensation; and the pressurizer water drained into the reactor vessel, increasing the liquid level at the core. It is believed that the core was completely covered by water by ∼207 min, when the pressurizer level decrease and the RCS depressurization stopped. Continued HPI resulted in increasing hot-leg water levels; and the pressurizer level began to increase at ∼210 min, when water reached the level of the surgeline entrance to the hot leg. Analysis of the refill assuming uniform liquid levels in the RCS fails to predict the observed phenomena. A set of equations describing the refill phenomena and accounting for compression of noncondensable gases has been derived from theoretical considerations, and solutions for water levels throughout the RCS have been obtained to correctly predict the phenomena occurring during the refill period.