ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
George D. Cremeans
Nuclear Technology | Volume 87 | Number 4 | December 1989 | Pages 745-754
Technical Paper | TMI-2: Decontamination and Waste Management / Radioactive Waste Management | doi.org/10.13182/NT89-A27667
Articles are hosted by Taylor and Francis Online.
The March 1979 accident at Three Mile Island Unit 2 and the subsequent 10-yr cleanup generated ∼8706 m3 (∼2300000 gal) of radioactively contaminated water, herein referred to as accident-generated water (AGW). Although most, if not all, of this inventory could be decontaminated to acceptable regulatory levels governing river discharge and released to the Susquehanna River, a settlement agreement with the city of Lancaster specifically prohibited the utility from doing so prior to an acceptable environmental evaluation by the U.S. Nuclear Regulatory Commission. To dispose of this large water inventory, nine alternative disposal methods were evaluated. This evaluation considered each method’s technical feasibility, environmental effect, cost, and public acceptance. On the basis of these criteria, as well as political and institutional considerations, disposal of the AGW by forced evaporation and collection of the evaporated solids was selected as the most acceptable method. The selected method is designed to provide a decontamination factor of 1000 to the radioactive particulates in the AGW. The system consists of (a) a vapor recompression distillation unit to distill the AGW in a closed cycle process and collect the purified distillate for subsequent release by vaporization, (b) an auxiliary evaporatory to further concentrate the bottoms from the main evaporator, (c) a flash vaporizer unit to flash the purified distillate to the atmosphere in a controlled and monitored manner, (d) a blender/dryer to produce a dry solid from the concentrated waste, and (e) a packaging system to prepare and package the solid waste in containers acceptable for shipment and burial at a commercial low-level radioactive waste disposal site. The projected time span for AGW disposal operations is ∼2 yr, allowing for scheduled availability of the 8706-m3 (2300000-gal) inventory and planned system maintenance time. The estimated volume of waste generated, packaged, and shipped during this operation is ∼145 tonnes (∼160 t). The waste conforms to the burial requirements for class A and transportation requirements for low specific activity radioactive material.