ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
August W. Cronenberg, Sidney Langer
Nuclear Technology | Volume 87 | Number 1 | August 1989 | Pages 234-242
Technical Paper | TMI-2: Materials Behavior / Nuclear Safety | doi.org/10.13182/NT89-A27651
Articles are hosted by Taylor and Francis Online.
Data from the Three Mile Island Unit 2 (TMI-2) accident have shown that only small amounts of iodine and cesium escaped the plant, on the order of tens of curies. To assess the chemical and physical processes responsible for such a limited release, a detailed investigation of iodine and cesium chemical and transport behavior during the core degradation phase of the TMI-2 accident was initiated. Analyses indicate elemental iodine and cesium release from fuel, which subsequently reacts with the high-temperature steam/ hydrogen effluent to produce the gaseous species Csl and CsOH. Partial condensation and chemisorption of CsOH in the upper reactor plenum and on hot-leg piping is also predicted, where loss of the CsOH molecule from a mixture of H2O, Csl, CsOH, and HI gases in chemical equilibrium can result in destabilization of the Csl molecule to replace CsOH, forming HI in the process. Likewise, Csl reaction with borated water is predicted to have resulted in partial conversion of Csl to cesium borate and HI. A combination of Csl, HI, and CsOH is therefore assessed to be the principal form of iodine and cesium transport leaving the reactor vessel during core degradation. These species were subsequently dissolved in water, resulting in large-scale retention of fission product iodine and cesium.