ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Industry Update—May 2025
Here is a recap of industry happenings from the recent past:
TerraPower’s Natrium reactor advances on several fronts
TerraPower has continued making aggressive progress in several areas for its under-construction Natrium Reactor Demonstration Project since the beginning of the year. Natrium is an advanced 345-MWe reactor that has liquid sodium as a coolant, improved fuel utilization, enhanced safety features, and an integrated energy storage system, allowing for a brief power output boost to 500-MWe if needed for grid resiliency. The company broke ground for its first Natrium plant in 2024 near a retiring coal plant in Kemmerer, Wyo.
Charles V. McIsaac, Richard S. Denning, Rajiv Kohli, Douglas W. Akers
Nuclear Technology | Volume 87 | Number 1 | August 1989 | Pages 224-233
Technical Paper | TMI-2: Materials Behavior / Nuclear Safety | doi.org/10.13182/NT89-A27650
Articles are hosted by Taylor and Francis Online.
Radiochemical, elemental, and particle size analyses have been performed on samples collected from the Three Mile Island Unit 2 reactor and auxiliary buildings. Measurements of the airborne concentration of iodine several days after the accident indicated that the equilibrium airborne concentration was at a maximum of 0.03% of core inventory inside the reactor building (RB), evidently as organic forms. Iodine was released to the reactor coolant during the accident and ∼14% of the core inventory of iodine was in solution in the water in the RB basement. Between 8 and 100% of the core inventory of iodine was accounted for in the sediment distributed over the RB basement floor. About 47% of the core inventory of cesium was released from the core. The majority of the released cesium was in solution in the water in the RB basement. Antimony and ruthenium were retained in the core, associated with stainless steel materials. Strontium and cerium were retained in the core in the forms of refractory oxides. Fuel and control rod elements found in the reactor coolant drain tank were evidently transported away from the core as condensed vapors in the form of hydrosols.