ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Allan Brown, Garry J. McIntyre, Christian Gräslund
Nuclear Technology | Volume 87 | Number 1 | August 1989 | Pages 137-145
Technical Paper | TMI-2: Materials Behavior / Nuclear Safety | doi.org/10.13182/NT89-A27643
Articles are hosted by Taylor and Francis Online.
Three samples from the ceramic melt, the lower crust, and the lower plenum of the previously molten part of the Three Mile Island Unit 2 core have been analyzed by X-ray diffraction to determine the compounds formed as a result of the accident in 1979. Supporting analyses were performed by gamma spectroscopy and particle-induced X-ray emission (PIXE) to provide information on radioactive nuclide content at trace levels and on elements with Z> Mat more significant levels. The analyses show the presence of the following major phases: (a) an inhomogenous solid solution based on UO2, probably containing zirconium as a substituent for uranium and with additional oxygen giving a superstoichiometric composition; (b) ZrO2 in the baddeleyite modification, which is stable below 1200 K, and tetragonal ZrO2, which is normally stable between 1200 and 1600 K; and (c) nickel, chromium ferrite [(Ni,Fe)(Fe,Cr)2O4]. Lattice parameter measurements indicate that both forms of ZrO2 contain UO2 in solid solution and the parameter of the ferrite phase is consistent with substitution of aluminum for part of the chromium and iron content. The PIXE measurements show that the nickel content of the ferrite is low. The distribution of these phases in the samples has been studied by making quantitative measurements on diffraction patterns from a total of 34 X-ray specimens. Differences between the three samples are discussed in terms of the equilibrium diagram of the UO2-ZrO2 system. The sample from the lower plenum has evidently been subjected to rapid cooling. The temperature history of the sample from the lower crust has been such that cooling was slow enough to bring about nearly complete equilibrium of the phases. The sample from the ceramic melt represents an intermediate case with simultaneous heating at one surface and cooling at the other.