ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Ho Nieh nominated to the NRC
Nieh
President Trump recently nominated Ho Nieh for the role of commissioner in the Nuclear Regulatory Commission through the remainder of a term that will expire June 30, 2029.
Nieh has been the vice president of regulatory affairs at Southern Nuclear since 2021, though he is currently working as a loaned executive at the Institute of Nuclear Power Operations, where he has been for more than a year.
Nieh’s experience: Nieh started his career at the Knolls Atomic Power Laboratory, where he worked primarily as a nuclear plant engineer and contributed as a civilian instructor in the U.S. Navy’s Nuclear Power Program.
From there, he joined the NRC in 1997 as a project engineer. In more than 19 years of service at the organization, he served in a variety of key leadership roles, including division director of Reactor Projects, division director of Inspection and Regional Support, and director of the Office of Nuclear Reactor Regulation.
Paul David Bottomley, Michel Coquerelle
Nuclear Technology | Volume 87 | Number 1 | August 1989 | Pages 120-136
Technical Paper | TMI-2: Materials Behavior / Nuclear Safety | doi.org/10.13182/NT89-A27642
Articles are hosted by Taylor and Francis Online.
Samples of the bores obtained from the melted core of the Three Mile Island Unit 2 (TMI-2) reactor were investigated as part of the TMI-2 accident evaluation program. The samples included fuel rod segments, control rod cladding, melted core rocks, and powder debris from various bores into the reactor core. The microstructure of the specimens was determined by examination and analysis of surface and cross section by means of electro-optical techniques (including energy-dispersive X-ray scanning electron microscopy and microprobe analysis). Gamma spectroscopy and a fission product release study were also performed on the specimens. The melted core rock specimens obtained from the G12 bores were mostly porous ceramic mixtures of uranium and zirconium oxides in the form of a fine eutectic of UO2- and ZrO2-rich phases and oxidized ferrous material derived from the stainless steel components. The rock specimens showed variations in porosity and ferrous content but a similar UO2-ZrO2 eutectic structure. Fission product analysis of the fuel segments and rocks indicated relatively low levels of activity due to fission products such as I37Cs, 106Ru, I54Eu, and fuel irradiation products. No volatile 129I was detected, but most other products displayed some retention in the melted core samples. According to whether eutectics were formed between Zr(O) and UO2 or ZrO2 and UO2 (i.e., the oxygen potential in the core), reference to the phase diagrams suggests temperatures of 2173 to 2873 K (1900 to 2600°C) for substantial periods and even up to 3073 K (2800°C) (U02 melting point) for the completely melted core specimens. Agglomerate specimens indicate lower temperatures [∼1673 K (1400°C), the melting point of stainless steel] and shorter excursion times at the edge of the melt zone. The remaining fuel rod segments showed very little change, indicating that the severe overheating is localized to the central part of the reactor pile.