ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Industry Update—May 2025
Here is a recap of industry happenings from the recent past:
TerraPower’s Natrium reactor advances on several fronts
TerraPower has continued making aggressive progress in several areas for its under-construction Natrium Reactor Demonstration Project since the beginning of the year. Natrium is an advanced 345-MWe reactor that has liquid sodium as a coolant, improved fuel utilization, enhanced safety features, and an integrated energy storage system, allowing for a brief power output boost to 500-MWe if needed for grid resiliency. The company broke ground for its first Natrium plant in 2024 near a retiring coal plant in Kemmerer, Wyo.
Paul David Bottomley, Michel Coquerelle
Nuclear Technology | Volume 87 | Number 1 | August 1989 | Pages 120-136
Technical Paper | TMI-2: Materials Behavior / Nuclear Safety | doi.org/10.13182/NT89-A27642
Articles are hosted by Taylor and Francis Online.
Samples of the bores obtained from the melted core of the Three Mile Island Unit 2 (TMI-2) reactor were investigated as part of the TMI-2 accident evaluation program. The samples included fuel rod segments, control rod cladding, melted core rocks, and powder debris from various bores into the reactor core. The microstructure of the specimens was determined by examination and analysis of surface and cross section by means of electro-optical techniques (including energy-dispersive X-ray scanning electron microscopy and microprobe analysis). Gamma spectroscopy and a fission product release study were also performed on the specimens. The melted core rock specimens obtained from the G12 bores were mostly porous ceramic mixtures of uranium and zirconium oxides in the form of a fine eutectic of UO2- and ZrO2-rich phases and oxidized ferrous material derived from the stainless steel components. The rock specimens showed variations in porosity and ferrous content but a similar UO2-ZrO2 eutectic structure. Fission product analysis of the fuel segments and rocks indicated relatively low levels of activity due to fission products such as I37Cs, 106Ru, I54Eu, and fuel irradiation products. No volatile 129I was detected, but most other products displayed some retention in the melted core samples. According to whether eutectics were formed between Zr(O) and UO2 or ZrO2 and UO2 (i.e., the oxygen potential in the core), reference to the phase diagrams suggests temperatures of 2173 to 2873 K (1900 to 2600°C) for substantial periods and even up to 3073 K (2800°C) (U02 melting point) for the completely melted core specimens. Agglomerate specimens indicate lower temperatures [∼1673 K (1400°C), the melting point of stainless steel] and shorter excursion times at the edge of the melt zone. The remaining fuel rod segments showed very little change, indicating that the severe overheating is localized to the central part of the reactor pile.