ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
R. J. Parsick, S. C. Jones, L. P. Hatch
Nuclear Technology | Volume 2 | Number 3 | June 1966 | Pages 221-225
Technical Paper and Note | doi.org/10.13182/NT66-A27590
Articles are hosted by Taylor and Francis Online.
The Settled Bed Fast Reactor (SBFR) concept features a packed bed of fuel (directly cooled with sodium) which must be highly resistant to consolidation during power operation in order to avoid reactivity excursions resulting from sudden increases in bed solid fraction. In the SBFR design, the stability of the packed fuel bed is considered accpetable if a 12-g lateral shock produces a change in bed solid fraction of less than 0.002 (e.g., from 0.630 to 0.632), equivalent to a 10¢ reactivity change. Experimental results show that beds settled from fluidization can be compacted to exhibit 1/6 of this change when shock tested. The particle interlocking effect of simulated coolant downflow gives a substantial extra measure of stability.