ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
A. J. Ulrich
Nuclear Technology | Volume 2 | Number 1 | February 1966 | Pages 36-40
Technical Paper | doi.org/10.13182/NT66-A27565
Articles are hosted by Taylor and Francis Online.
A thermionic energy-conversion diode that uses a liquid metal as the electron collector is evaluated. Liquids, such as cesium, rubidium, or potassium and their alloys, are separated from the hot emitter by the vapor film produced in film boiling. Such a vapor film would maintain electrical separation if the emitter became warped because of radiation damage, thus greatly improving the reliability of the in-core thermionic diode. An experiment showed that stable film boiling occurs for ranges of emitter temperatures and cesium and potassium vapor pressures that are appropriate for thermionic diodes. The typical thermionic series-connected fuel-element geometry can be used in a film-boiling liquid-metal design to produce power in the zero g field of space. The improved tolerance to radiation damage and to emitter evaporation requires more precise control of collector temperatures, a modified startup and shutdown schedule to avoid nucleate boiling, and further development of a new thermal divider to exclude nucleate boiling at the edges of the collector surfaces.