ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
S. R. Bierman, K. L. Garlid, J. R. Clark
Nuclear Technology | Volume 2 | Number 6 | December 1966 | Pages 515-518
Technical Paper and Note | doi.org/10.13182/NT66-A27548
Articles are hosted by Taylor and Francis Online.
In making pulsed-neutron source measurements, counting rates of such magnitude are often encountered that the characteristics of the data-acquisition system must be properly identified before corrections for coincidence losses can be accurately made. To account properly for coincidence losses at very high counting rates, it is necessary to determine how closely a perfectly paralyzable or completely nonparalyzable system represents the real detection system used in the measurements. A maximum observed counting-rate technique is presented which, in conjunction with a double-pulse method, permits the system to be characterized relative to these two theoretically limiting models.