ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
A. D. Whapham
Nuclear Technology | Volume 2 | Number 2 | April 1966 | Pages 123-130
Technical Paper | doi.org/10.13182/NT66-A27492
Articles are hosted by Taylor and Francis Online.
The structure of post-irradiation annealed UO2 has been examined by transmission electron microscopy to try to understand the behavior and release of fission gas. At a dose of 2.2 × 1019 fissions/cm3, 5 × 1015 small gas bubbles/cm3 are observed in the material. These precipitate at 1100°C and appear to grow from 25 to 100-Å diam at 1500°C by diffusion of gas atoms from the matrix. Grain-boundary migration sweeps up these bubbles at between 1800 and 2000°C. Re-solution of fission-gas bubbles up to 300-Å diam has been demonstrated on re-irradiation. At a dose of 1.6 × 1020 fissions/cm3, bubbles appear to grow by coalescence and by dislocation sweeping. Precipitates, believed to be solid fission products, are observed. It is concluded that, in a fuel element in which a high-temperature gradient exists, the gas release below 1800°C will be controlled by the migration of bubbles to grain boundaries and by the degree of linking up between the gas-filled voids produced at grain boundaries. At temperatures above 1800°C, large gas-filled voids produced at grain boundaries would be expected to migrate up the temperature gradient by the vapor-transfer mechanism, continuing the process of sweeping up most of the gas started by the initial grown-in porosity.