ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Radiant signs contract on microreactors for the military
California-based microreactor developer Radiant Industries has announced the signing of what it calls “the first-ever agreement” to deliver a mass-manufactured nuclear microreactor to a U.S. military base. The contract was signed with the Department of Defense’s Defense Innovation Unit (DIU) and the U.S. Air Force as part of the Advanced Nuclear Power for Installations (ANPI) program.
A. D. Whapham
Nuclear Technology | Volume 2 | Number 2 | April 1966 | Pages 123-130
Technical Paper | doi.org/10.13182/NT66-A27492
Articles are hosted by Taylor and Francis Online.
The structure of post-irradiation annealed UO2 has been examined by transmission electron microscopy to try to understand the behavior and release of fission gas. At a dose of 2.2 × 1019 fissions/cm3, 5 × 1015 small gas bubbles/cm3 are observed in the material. These precipitate at 1100°C and appear to grow from 25 to 100-Å diam at 1500°C by diffusion of gas atoms from the matrix. Grain-boundary migration sweeps up these bubbles at between 1800 and 2000°C. Re-solution of fission-gas bubbles up to 300-Å diam has been demonstrated on re-irradiation. At a dose of 1.6 × 1020 fissions/cm3, bubbles appear to grow by coalescence and by dislocation sweeping. Precipitates, believed to be solid fission products, are observed. It is concluded that, in a fuel element in which a high-temperature gradient exists, the gas release below 1800°C will be controlled by the migration of bubbles to grain boundaries and by the degree of linking up between the gas-filled voids produced at grain boundaries. At temperatures above 1800°C, large gas-filled voids produced at grain boundaries would be expected to migrate up the temperature gradient by the vapor-transfer mechanism, continuing the process of sweeping up most of the gas started by the initial grown-in porosity.