ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
W. Berkhahn, W. Ehrfeld, G. Krieg
Nuclear Technology | Volume 40 | Number 3 | October 1978 | Pages 329-340
Technical Paper | Isotope Separation | doi.org/10.13182/NT78-A26731
Articles are hosted by Taylor and Francis Online.
In the separation nozzle process, uranium isotope separation is based on the mass dependence of the centrifugal forces in a fast curved flow consisting of uranium hexafluoride and a light auxiliary gas that is admixed in a high molar excess. The objectives of this investigation are to determine the dependence of the separating characteristics of a centrifugal flow field on its spatial structure. Calculations were carried out for small UF6 mole fractions in the light auxiliary gas, so that the complicated ternary diffusion equations are reduced to two simple binary diffusion equations. The calculations show that isotope separation increases with the radial displacement of the UF6 streamlines relative to the auxiliary gas. Favorable initial distributions for a large radial shifting of UF6 exist when the flux, at the beginning of deflection, is high for small deflection radii, whereas at the end of deflection, the UF6 should be concentrated at large radii near the outer deflection wall. Consequently, a radial decrease of flow velocity, a high ratio of nozzle width to deflection radius, and high centrifugal fields at the end of deflection yield high separation effects. Taking into account the interdependence between the gas flow rate, the viscous losses, and the diffusion coefficient, the model developed can predict the influence of geometric parameters on the separating characteristics of the nozzle.