ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE fast tracks test reactor projects: What to know
The Department of Energy today unveiled 10 companies racing to bring test reactors online by next year to meet Trump's deadline of next Independance Day, leveraging a new DOE pathway that allows reactor authorization outside national labs. As first outlined in one of the four executive orders on nuclear energy released by President Trump on May 23 and in the request for applications for the Reactor Pilot Program released June 18, the companies must use their own money and sites—and DOE authorization—to get reactors operating. What they won’t need is a Nuclear Regulatory Commission license.
K. Lassmann
Nuclear Technology | Volume 40 | Number 3 | October 1978 | Pages 321-328
Technical Paper | Material | doi.org/10.13182/NT78-A26730
Articles are hosted by Taylor and Francis Online.
The state-of-the-art in fuel rod structural analysis is discussed, and possible future developments in this field are outlined. The conclusion is drawn that the most important goal for future research is a deeper understanding of material behavior. It is suggested that a strategy of successive use of diverse models appropriate to the varying degrees of theoretical sophistication be followed in fuel rod structural analysis: Preliminary work should be an analysis of the integral fuel rod with one-dimensional models, followed by local two-dimensional analyses. Finally, the deterministic analyses should be augmented by probabilistic work. All these modeling approaches are inevitably complementary in exhaustive fuel rod analysis, but they are, despite the tremendous theoretical efforts, no substitute for fuel rod performance tests. Nevertheless, analytical modeling will remain an indispensable tool for a long time to come, since with this theoretical background, the interpretation of experimental results is facilitated, and a better insight into fuel rod behavior is provided.