ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
T. E. McKone, W. E. Kastenberg
Nuclear Technology | Volume 40 | Number 2 | September 1978 | Pages 170-184
Technical Paper | Tutorial Materials/Design Interaction in Nuclear System / Reactor Siting | doi.org/10.13182/NT78-A26713
Articles are hosted by Taylor and Francis Online.
A method has been developed for determining doses to the public resulting from releases of tritium as tritiated water vapor or as tritiated lithium compounds. This method has been included in a computer model. This model uses the Gaussian dispersion method to predict distribution of tritium species in the downwind environment. Movement of tritium into biological systems is determined by treating these systems as a series of interacting water compartments. Dispersion and uptake calculations are applied to two sample sites to predict health effects. Consequences predicted by the model are linear and can be scaled to any release quantity. For a continuous release of tritium at a rate of 10 Ci/day, the calculated dose would be 8 mrem/yr at the site boundary, with a dose commitment of 10 to 100 man-rem/yr within an 80-km radius. For an instantaneous release of 108 Ci, the calculated dose would be as high as 2200 rem at the site boundary, contributing a population dose of 0.6 to 2.6 X 106 manrem within 80 km.