ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE fast tracks test reactor projects: What to know
The Department of Energy today unveiled 10 companies racing to bring test reactors online by next year to meet Trump's deadline of next Independance Day, leveraging a new DOE pathway that allows reactor authorization outside national labs. As first outlined in one of the four executive orders on nuclear energy released by President Trump on May 23 and in the request for applications for the Reactor Pilot Program released June 18, the companies must use their own money and sites—and DOE authorization—to get reactors operating. What they won’t need is a Nuclear Regulatory Commission license.
Shunsuke Uchida, Motoaki Utamura, Hideo Yusa, Hideo Maki
Nuclear Technology | Volume 40 | Number 1 | August 1978 | Pages 79-88
Technical Paper | Fuel | doi.org/10.13182/NT78-A26701
Articles are hosted by Taylor and Francis Online.
To improve the efficiency of in-core wet sipping leaker detection, a warm water injection method was developed. The method was characterized by pouring warm water into the channel box through the sipper cap and replacing all the water originally present with the poured water. Basic experiments were performed to determine the efficiency of the method. Mockup experiments were undertaken to confirm this and to ascertain the effects of operational conditions on the efficiency. These were done by the sipping procedures by means of a facility that included a full-scale 8 × 8 simulated fuel assembly. It was demonstrated that (a) the efficiency of detection for bottom leaks increased about a hundred times over the commonly used method, and (b) the increase in efficiency came from flattening the temperature distribution along the axial direction and exciting the natural convection flow in the whole assembly to promote the fission product transfer. Optimal operational conditions for the method were also proposed as follows: