ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Dry Ice Blasting: A Game-Changer for Safe Cleaning and Decontamination in Nuclear Power Plants
The nuclear energy industry is critical not only for meeting the world’s growing demand for electricity but also for advancing global decarbonization goals. As the sector evolves—through life extensions of existing plants, decommissioning, innovations like small modular reactors (SMRs) and microreactors, and new facility construction—the need for safe, efficient, and environmentally responsible maintenance and decommissioning continues to grow. Whether a plant is coming online, operating beyond its original design life, or entering decommissioning, cleanliness and operational integrity remain non-negotiable. That’s where dry ice blasting stands out—a powerful, safe cleaning method ideally suited for the high-stakes demands of nuclear environments.
N. A. Baily, R. J. Andres
Nuclear Technology | Volume 4 | Number 5 | May 1968 | Pages 337-346
Technical Paper and Note | doi.org/10.13182/NT68-A26399
Articles are hosted by Taylor and Francis Online.
High-purity, single-crystal cadmium telluride has been investigated from the viewpoint of its possible use for gamma-ray detection and spectroscopy. The width of its band gap makes the material an attractive possibility for room-temperature operation. At present, its performance is apparently limited by carrier trapping. Although surface barriers can be established on both p- and n-type materials, diffused junctions have not yet been obtained. Ohmic contacts have been formed on various materials under specific conditions. However, the general problem of establishing such contacts is still unsolved. In a limited number of crystals, magnesium or boron ions were found to drift within the crystal under the action of an electric field and thereby establish a compensated region. The surface barrier devices fabricated responded to both alpha particles and gamma rays. In some materials, pulses corresponding to the full particle energy were observed. The best resolution (for alpha particles) obtained as measured by the full width at half maximum was ∼25%. Noise levels even at elevated temperatures were generally below 20 keV. The main problems with presently available materials appear to be a lack of crystal uniformity and structural integrity.