ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
G. W. Keilholtz, R. E. Moore, M. F. Osborne
Nuclear Technology | Volume 4 | Number 5 | May 1968 | Pages 330-336
Technical Paper and Note | doi.org/10.13182/NT68-A26398
Articles are hosted by Taylor and Francis Online.
Solid cylindrical specimens (½- × ½-in.) of the monocarbides of Ti, Zr, Ta, Nb, and W, made by 1) hot pressing, 2) slip casting and sintering, and 3) explosion-pressing and sintering, were irradiated at 300 to 700°C. Fast-neutron (> 1 MeV) exposures ranged from 0.8 to 5.4 × 1021 n/cm2 in a fast-neutron flux profile which ranged from 0.6 to 2.6 × 1014 n/(cm2 sec). The order of decreasing fracture of specimens made by 1) and 2) was Ta, Zr, Nb, Ti, and W. Specimens made by 3) not only fractured at lower neutron doses than those made by 1) and 2), but there was also less difference in gross damage among the five carbides. Tungsten carbide expanded in volume by ∼0.6% and the other carbides by 2 to 3% upon exposure to fast doses of 1 to 2 × 1021 n/cm2. Higher doses produced either a decrease in volume toward the initial volume or no further change. Volume changes represented crystal volume changes since there was no grain boundary separation. Less than 50% of the crystal expansion was accounted for by increases in lattice parameters. The major cause of damage to carbides is postulated to result from point defects produced by fast neutrons. It is suggested that most of the initial volume expansion is caused by the formation of defect agglomerates too large to affect measured values of the lattice parameters. Slow neutrons of the irradiation spectrum may have contributed to premature fracturing of explosion-pressed specimens through absorptions by added Co and Ni binder at the grain boundaries.