ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
G. W. Keilholtz, R. E. Moore, M. F. Osborne
Nuclear Technology | Volume 4 | Number 5 | May 1968 | Pages 330-336
Technical Paper and Note | doi.org/10.13182/NT68-A26398
Articles are hosted by Taylor and Francis Online.
Solid cylindrical specimens (½- × ½-in.) of the monocarbides of Ti, Zr, Ta, Nb, and W, made by 1) hot pressing, 2) slip casting and sintering, and 3) explosion-pressing and sintering, were irradiated at 300 to 700°C. Fast-neutron (> 1 MeV) exposures ranged from 0.8 to 5.4 × 1021 n/cm2 in a fast-neutron flux profile which ranged from 0.6 to 2.6 × 1014 n/(cm2 sec). The order of decreasing fracture of specimens made by 1) and 2) was Ta, Zr, Nb, Ti, and W. Specimens made by 3) not only fractured at lower neutron doses than those made by 1) and 2), but there was also less difference in gross damage among the five carbides. Tungsten carbide expanded in volume by ∼0.6% and the other carbides by 2 to 3% upon exposure to fast doses of 1 to 2 × 1021 n/cm2. Higher doses produced either a decrease in volume toward the initial volume or no further change. Volume changes represented crystal volume changes since there was no grain boundary separation. Less than 50% of the crystal expansion was accounted for by increases in lattice parameters. The major cause of damage to carbides is postulated to result from point defects produced by fast neutrons. It is suggested that most of the initial volume expansion is caused by the formation of defect agglomerates too large to affect measured values of the lattice parameters. Slow neutrons of the irradiation spectrum may have contributed to premature fracturing of explosion-pressed specimens through absorptions by added Co and Ni binder at the grain boundaries.