ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
J. R. Wolberg, G. Hetsroni
Nuclear Technology | Volume 4 | Number 3 | March 1968 | Pages 187-189
Technical Paper and Note | doi.org/10.13182/NT68-A26384
Articles are hosted by Taylor and Francis Online.
Prediction analysis is applied to the design of experiments for measuring the half-life of a radioactive species. The half-life is assumed to be determined by fitting the exponential-plus-background function to the data points. Results can predict the experimental accuracy to which the half-life will be determined in a proposed experiment. The predicted accuracy is a function of the number of data points, the range of time values, the initial count rate, the amplitude-to-background ratio, and the uncertainties (in the time value as well as in the counts per channel) associated with each data point.