ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
J. H. Roberts, A. N. Behkami
Nuclear Technology | Volume 4 | Number 3 | March 1968 | Pages 182-186
Technical Paper and Note | doi.org/10.13182/NT68-A26383
Articles are hosted by Taylor and Francis Online.
Improvements in a technique for deducing the spectrum of fast neutrons from the measurement of proton recoil tracks in nuclear emulsions are described. The source of neutrons may be anisotropic. Tests were made by placing Ilford L4 emulsion plates in an assembly of depleted uranium (0.21% 235U) in which neutrons are produced by photofission. The photofission was induced by bremsstrahlung produced when a pulsed 30-MeV electron beam from a LINAC hit a target of depleted uranium within the assembly. Special development with amidol developer was used to reduce chemical fog and gamma-ray background in the emulsions, permitting a measurement of proton tracks down to about two microns. The neutron spectrum from ≈ 0.3 to 2.5 MeV is deduced from the measurements. Computer programs were developed to make the calculations. Results up to ≈ 0.9 MeV are compared with the neutron spectrum measured by time-of-flight techniques. Satisfactory agreement is obtained.