ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The spotlight shines on a nuclear influencer
Brazilian model, nuclear advocate, and philanthropist Isabelle Boemeke, who the online TED lecture series describes as “the world’s first nuclear energy influencer,” was the subject of a recent New York Times article that explored her ardent support for and advocacy of nuclear technology.
J. H. Roberts, A. N. Behkami
Nuclear Technology | Volume 4 | Number 3 | March 1968 | Pages 182-186
Technical Paper and Note | doi.org/10.13182/NT68-A26383
Articles are hosted by Taylor and Francis Online.
Improvements in a technique for deducing the spectrum of fast neutrons from the measurement of proton recoil tracks in nuclear emulsions are described. The source of neutrons may be anisotropic. Tests were made by placing Ilford L4 emulsion plates in an assembly of depleted uranium (0.21% 235U) in which neutrons are produced by photofission. The photofission was induced by bremsstrahlung produced when a pulsed 30-MeV electron beam from a LINAC hit a target of depleted uranium within the assembly. Special development with amidol developer was used to reduce chemical fog and gamma-ray background in the emulsions, permitting a measurement of proton tracks down to about two microns. The neutron spectrum from ≈ 0.3 to 2.5 MeV is deduced from the measurements. Computer programs were developed to make the calculations. Results up to ≈ 0.9 MeV are compared with the neutron spectrum measured by time-of-flight techniques. Satisfactory agreement is obtained.