ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
J. W. H. Chi, C. E. Landahl
Nuclear Technology | Volume 4 | Number 3 | March 1968 | Pages 159-169
Technical Paper and Note | doi.org/10.13182/NT68-A26380
Articles are hosted by Taylor and Francis Online.
The reaction kinetics of graphite with hydrogen at high temperatures and pressures was studied by measuring the rate of weight loss and surface recession of graphite samples. Under experimental conditions, methane and acetylene were the predominant products. From previous studies, surface reaction mechanisms were assumed to be rate-controlling, and first-order rate equations were postulated. The reaction rates were assumed to be proportional to the gross external surface area. Apparent reaction velocity constants were calculated from the data, and significant correlations, obtained by use of the Arrhenius equation, were verified by data reported in the literature. The following were shown: