ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
G. D. Wait
Nuclear Technology | Volume 4 | Number 6 | June 1968 | Pages 440-447
Technical Paper and Note | doi.org/10.13182/NT68-A26370
Articles are hosted by Taylor and Francis Online.
A high-sensitivity dosimeter system was developed to measure low gamma-ray dose rates in the presence of neutrons. The detector is a liquid scintillator that employs hexafluorobenzene (C6F6) as a solvent and is practically hydrogen free. The energy absorbed in the scintillator is determined directly by counting the analog-to-digital converter pulses of a multichannel analyzer in a fast scaler. The ratio of energy absorbed to air exposure dose was measured for incident gamma energies of 0.06 MeV (241Am), 0.66 MeV (137Cs), 1.25 MeV(60Co), and 4.43 MeV (241AmBe) and gave an average deviation of 3.5% from a constant ratio of energy absorbed to air exposure. A Monte Carlo computer program was written to determine the response of the scintillator to a broader range of gamma-ray energies. This indicated that the ratio of the energy absorbed to the air exposure would vary within the limits of ±10% from 50keV to 10 MeV. The response to fast neutrons also was measured and compared with calculations which showed that the major component in the neutron response was produced by β− decay following the (n,α) reaction in 19F. For the broad spectrum of incident fast neutrons (up to 11.5 MeV) from a 241AmBe source, the neutron response of the dosimeter was found to be < 8% of its response to the comparable flux of 4.43 MeV gamma rays from the source.