ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
G. D. Wait
Nuclear Technology | Volume 4 | Number 6 | June 1968 | Pages 440-447
Technical Paper and Note | doi.org/10.13182/NT68-A26370
Articles are hosted by Taylor and Francis Online.
A high-sensitivity dosimeter system was developed to measure low gamma-ray dose rates in the presence of neutrons. The detector is a liquid scintillator that employs hexafluorobenzene (C6F6) as a solvent and is practically hydrogen free. The energy absorbed in the scintillator is determined directly by counting the analog-to-digital converter pulses of a multichannel analyzer in a fast scaler. The ratio of energy absorbed to air exposure dose was measured for incident gamma energies of 0.06 MeV (241Am), 0.66 MeV (137Cs), 1.25 MeV(60Co), and 4.43 MeV (241AmBe) and gave an average deviation of 3.5% from a constant ratio of energy absorbed to air exposure. A Monte Carlo computer program was written to determine the response of the scintillator to a broader range of gamma-ray energies. This indicated that the ratio of the energy absorbed to the air exposure would vary within the limits of ±10% from 50keV to 10 MeV. The response to fast neutrons also was measured and compared with calculations which showed that the major component in the neutron response was produced by β− decay following the (n,α) reaction in 19F. For the broad spectrum of incident fast neutrons (up to 11.5 MeV) from a 241AmBe source, the neutron response of the dosimeter was found to be < 8% of its response to the comparable flux of 4.43 MeV gamma rays from the source.