ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
G. D. Wait
Nuclear Technology | Volume 4 | Number 6 | June 1968 | Pages 440-447
Technical Paper and Note | doi.org/10.13182/NT68-A26370
Articles are hosted by Taylor and Francis Online.
A high-sensitivity dosimeter system was developed to measure low gamma-ray dose rates in the presence of neutrons. The detector is a liquid scintillator that employs hexafluorobenzene (C6F6) as a solvent and is practically hydrogen free. The energy absorbed in the scintillator is determined directly by counting the analog-to-digital converter pulses of a multichannel analyzer in a fast scaler. The ratio of energy absorbed to air exposure dose was measured for incident gamma energies of 0.06 MeV (241Am), 0.66 MeV (137Cs), 1.25 MeV(60Co), and 4.43 MeV (241AmBe) and gave an average deviation of 3.5% from a constant ratio of energy absorbed to air exposure. A Monte Carlo computer program was written to determine the response of the scintillator to a broader range of gamma-ray energies. This indicated that the ratio of the energy absorbed to the air exposure would vary within the limits of ±10% from 50keV to 10 MeV. The response to fast neutrons also was measured and compared with calculations which showed that the major component in the neutron response was produced by β− decay following the (n,α) reaction in 19F. For the broad spectrum of incident fast neutrons (up to 11.5 MeV) from a 241AmBe source, the neutron response of the dosimeter was found to be < 8% of its response to the comparable flux of 4.43 MeV gamma rays from the source.