ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
J. F. Lagedrost, D. F. Askey, V. W. Storhok, J. E. Gates
Nuclear Technology | Volume 4 | Number 1 | January 1968 | Pages 54-61
Technical Paper and Note | doi.org/10.13182/NT68-A26353
Articles are hosted by Taylor and Francis Online.
The thermal conductivity of PuO2 as determined by thermal diffusivity measurements is presented for the temperature range 250 to ≈1200°C. Specimens of PuO2 with confirmed stoichiometry were fabricated by hot isostatic pressing of powder to densities of 96.5 and 81.9% of theoretical. The thermal diffusivity of four specimens, two of each density, was measured by the heat pulse technique using a laser as the heat source. The data indicated that the thermal conductivity of PuO2 is lower than that of UO2, and decreases with increasing temperature from 250 to 1000°C in an approximate 1/T relation. Values range from 0.06 W/(cm deg C) at 300°C to 0.025 W/(cm deg C) at 1200°C. An apparent reduction of the PuO2 was observed at temperatures above 1200°C.