ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
J. Malvyn McKibben
Nuclear Technology | Volume 4 | Number 4 | April 1968 | Pages 260-267
Technical Paper and Note | doi.org/10.13182/NT68-A26323
Articles are hosted by Taylor and Francis Online.
Certain light elements that undergo nuclear reactions with alpha particles can be identified in alpha emitters such as 238PuO2 by analysis of the resulting radiation—specifically, of gamma photons, or “reaction gammas.” Gamma spectrometry has been used successfully for this purpose on production lots of 238PuO2 from which neutron emission rates were abnormally high because of (α,n) reactions with impurities. To establish a base for this type of analysis, reaction gamma spectra for 14 light elements were obtained by measuring gamma spectra from samples of 238PuO2 before and after addition of known quantities of the elements. Emission rates of major gammas of each element, in γ/min per gram of 238Pu, were also developed from these standard mixtures. A catalog of principal reaction gammas from each element was assembled. Although absolute emission rates of reaction gammas were obtained, this technique is only semiquantitative because the gamma yield is highly dependent on a number of variables, including the incident alpha-particle energy and the distribution of the impurity element in the sample.