ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The spotlight shines on a nuclear influencer
Brazilian model, nuclear advocate, and philanthropist Isabelle Boemeke, who the online TED lecture series describes as “the world’s first nuclear energy influencer,” was the subject of a recent New York Times article that explored her ardent support for and advocacy of nuclear technology.
W. F. Murphy, H. E. Strohm
Nuclear Technology | Volume 4 | Number 4 | April 1968 | Pages 222-229
Technical Paper and Note | doi.org/10.13182/NT68-A26320
Articles are hosted by Taylor and Francis Online.
Segments of Type-304L stainless-steel cladding from irradiated EBR-II fuel elements have been used for burst tests from room temperature to 1000°C. The cladding had accumulated exposures of (0.5 to 1.4) × 1022 n/cm2 (> 0.1 MeV) at temperatures between 370 and 500°C. In burst tests at ≤ 700°C, the greater strength was on the lower half of the irradiated cladding where the irradiation temperature was < 475°C. Tests at 800, 900, and 1000°C each showed uniform strength along the lengths of the cladding. The strength of the irradiated specimens decreased most rapidly with temperatures between 400 and 700°C. Unirradiated specimens were weaker than irradiated ones below 700°C; above 700°C, the unirradiated specimens were slightly stronger. The irradiated and the unirradiated specimens had low uniform strain (∼1 and ∼10%, respectively) at temperature of ∼ 400 to 500°C.