ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
W. F. Murphy, H. E. Strohm
Nuclear Technology | Volume 4 | Number 4 | April 1968 | Pages 222-229
Technical Paper and Note | doi.org/10.13182/NT68-A26320
Articles are hosted by Taylor and Francis Online.
Segments of Type-304L stainless-steel cladding from irradiated EBR-II fuel elements have been used for burst tests from room temperature to 1000°C. The cladding had accumulated exposures of (0.5 to 1.4) × 1022 n/cm2 (> 0.1 MeV) at temperatures between 370 and 500°C. In burst tests at ≤ 700°C, the greater strength was on the lower half of the irradiated cladding where the irradiation temperature was < 475°C. Tests at 800, 900, and 1000°C each showed uniform strength along the lengths of the cladding. The strength of the irradiated specimens decreased most rapidly with temperatures between 400 and 700°C. Unirradiated specimens were weaker than irradiated ones below 700°C; above 700°C, the unirradiated specimens were slightly stronger. The irradiated and the unirradiated specimens had low uniform strain (∼1 and ∼10%, respectively) at temperature of ∼ 400 to 500°C.