ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
David C. Cox, Paul Baybutt
Nuclear Technology | Volume 57 | Number 3 | June 1982 | Pages 320-330
Technical Paper | Nuclear Safety | doi.org/10.13182/NT82-A26301
Articles are hosted by Taylor and Francis Online.
Approaches to the regulation of risk from technological systems, such as nuclear power plants or chemical process plants, in which potential accidents may result in a broad range of adverse consequences must take into account several different aspects of risk. These include overall or average risk, accidents posing high relative risks, the rate at which accident probability decreases with increasing accident consequences, and the impact of high frequency, low consequence accidents. A hypothetical complementary cumulative distribution function (CCDF), with appropriately chosen parametric form, meets all these requirements. The Farmer limit line, by contrast, places limits on the risks due to individual accident sequences, and cannot adequately account for overall risk. This reduces its usefulness as a regulatory tool. In practice, the CCDF is used in the Canadian nuclear licensing process, while the Farmer limit line approach, supplemented by separate qualitative limits on overall risk, is employed in the United Kingdom.