ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
David J. Dixon, Mohamed A. Elmaghrabi, Ian C. Rickard
Nuclear Technology | Volume 57 | Number 2 | May 1982 | Pages 228-233
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT82-A26285
Articles are hosted by Taylor and Francis Online.
With the everchanging economic and licensing environment of the nuclear fuel cycle, Combustion Engineering (C-E) considered reducing the fuel pellet diameter of its current fuel rod designs. However, the economic incentive to reduce the diameter, considering the uncertainty of the assumptions used for the economics analysis, is at best very small. This together with the negative aspects of reduced safety margins, the increased number of discharge fuel assemblies that have to be stored or disposed of each year, and the change from a design of proven reliability all yield the conclusion that the current fuel pellet diameters used by C-E should not be changed. The conclusion differs from that reported by others as a result of the use of more sophisticated neutronics calculations and more realistic definition of fuel cycle cost parameters. This analysis was performed using C-E’s most advanced neutronics model, DIT. The model was applied to high burnup fuel (48 MWd/kgU) and cores operating on 18-month cycles. To maintain constant batch average discharge burnup and constant energy production, the number of assemblies in each reload batch was increased as the fuel pellet radius decreased. Finally, the fabrication and disposal price was adjusted as the assembly loading decreased such that the cost to fabricate or dispose of each assembly was kept constant.