ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
Nandan G. Chandregowda, Sunil S. Chirayath, William S. Charlton, Young Ham, Shiva Sitaraman, Gil Hoon Ahn
Nuclear Technology | Volume 184 | Number 3 | December 2013 | Pages 320-332
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-A24989
Articles are hosted by Taylor and Francis Online.
Korea Hydro and Nuclear Power has built a new modular type of CANDU spent fuel bundle dry storage facility, MACSTOR KN-400, at the Wolsong reactor site in the Republic of Korea. Four CANDU reactors operate at the Wolsong site, and the MACSTOR KN-400 has the capacity to store up to 24 000 CANDU spent fuel bundles. The International Atomic Energy Agency safeguards regulations demand an effective method for spent-fuel re-verification at the MACSTOR KN-400 facility in the event of any loss of continuity of knowledge. A radiation signal-dependent spent-fuel re-verification design of the MACSTOR KN-400 is scrutinized through mathematical model development and Monte Carlo radiation transport simulations using the state-of-the-art computer code MCNP. Both gamma and neutron transport simulations for various spent fuel bundle diversion scenarios are carried out for the central and corner re-verification tube structures. The CANDU spent fuel bundles with a burnup of 7500 MWd/tonne U (burned at a specific power of 28.39 MW/tonne) and 10 years of cooling time are considered for the radiation source term. Results of the gamma transport simulations incorporating cadmium-zinc-telluride detectors inside the re-verification tube show that spent fuel bundles diverted from the inner locations of the storage basket cannot be detected by observing a gamma radiation signal change. Neutron transport simulations consisting of a 3He detector inside the re-verification tube show that certain spent fuel bundle diversions could be detected. However, inverse MCNP neutron transport simulations show that the possibility of detecting diversion of [approximately]67% of spent fuel bundles stored in the basket region on the opposite side from the collimator of the re-verification tube is small, assuming a neutron detection counting time of 1 h per re-verification tube. It is also observed that the nondetection probability for most of the diversion scenarios considered is large. Nondetection probability here is defined as the probability of not detecting the diversion of spent fuel bundles from the baskets by observing radiation signal reduction from the removal of the bundles. Containment and surveillance methods are being employed for safeguards purposes at the facility, supplemented by periodic axial profile fingerprinting. However, since the nondetection probability is large for most scenarios, the facility should consider alternatives to this method in case loss of continuity of knowledge occurs.