ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Koroush Shirvan, Mujid Kazimi
Nuclear Technology | Volume 184 | Number 3 | December 2013 | Pages 274-286
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-A24985
Articles are hosted by Taylor and Francis Online.
An optimization search over all design parameters yields a boiling water reactor (BWR) with high power density (BWR-HD) at a power level of 5000 MW(thermal), equivalent to a 26% uprated Advanced BWR (ABWR), the latest version of operating BWR. This results in economic benefits, estimated to be [approximately]20% capital and operation and maintenance costs and similar total fuel cycle cost per unit electricity. A safety analysis of the BWR-HD was performed and compared with that of the ABWR. It covered a range of transients, involving a decrease in reactor coolant inventory or coolant system flow rate, changes in coolant temperature along with increase in reactor pressure, and a reactivity-initiated transient. The BWR-HD's different core flow velocity, feedwater flow rate, core inlet temperature, void coefficient of reactivity, pressure drop, core fuel loading, and volume of fluid in the core resulted in very different response to transients. In general, the 1.3-m-shorter core results in faster scram times and lower total positive reactivity insertions during the transients, which improves the BWR-HD's performance compared to that of the ABWR. The core remains covered and the pressure in the reactor pressure vessel never rises above the licensing limits during any of the simulated transients. The change in minimum critical power ratio for the BWR-HD was smaller than or equal to that of the reference ABWR in all of the six simulated transients. For the loss-of-coolant-inventory accidents and severe accidents, the BWR-HD qualitative performance was judged to be acceptable and could result in an improved response with the lower fuel and zirconium loading.