ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Project Omega emerges from stealth mode with plans to recycle U.S. spent fuel
Nuclear technology start-up Project Omega announced on February 11 that it has emerged from stealth mode with hopes of processing and recycling spent nuclear fuel into “long-duration, high-density power sources and critical materials for the nuclear industry.”
Koroush Shirvan, Mujid Kazimi
Nuclear Technology | Volume 184 | Number 3 | December 2013 | Pages 274-286
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-A24985
Articles are hosted by Taylor and Francis Online.
An optimization search over all design parameters yields a boiling water reactor (BWR) with high power density (BWR-HD) at a power level of 5000 MW(thermal), equivalent to a 26% uprated Advanced BWR (ABWR), the latest version of operating BWR. This results in economic benefits, estimated to be [approximately]20% capital and operation and maintenance costs and similar total fuel cycle cost per unit electricity. A safety analysis of the BWR-HD was performed and compared with that of the ABWR. It covered a range of transients, involving a decrease in reactor coolant inventory or coolant system flow rate, changes in coolant temperature along with increase in reactor pressure, and a reactivity-initiated transient. The BWR-HD's different core flow velocity, feedwater flow rate, core inlet temperature, void coefficient of reactivity, pressure drop, core fuel loading, and volume of fluid in the core resulted in very different response to transients. In general, the 1.3-m-shorter core results in faster scram times and lower total positive reactivity insertions during the transients, which improves the BWR-HD's performance compared to that of the ABWR. The core remains covered and the pressure in the reactor pressure vessel never rises above the licensing limits during any of the simulated transients. The change in minimum critical power ratio for the BWR-HD was smaller than or equal to that of the reference ABWR in all of the six simulated transients. For the loss-of-coolant-inventory accidents and severe accidents, the BWR-HD qualitative performance was judged to be acceptable and could result in an improved response with the lower fuel and zirconium loading.