ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Koroush Shirvan, Mujid Kazimi
Nuclear Technology | Volume 184 | Number 3 | December 2013 | Pages 261-273
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-A24984
Articles are hosted by Taylor and Francis Online.
Increasing the economic competitiveness of nuclear energy is vital to its future. One way to reduce the cost of the plant is by extracting more power from the same volume. A scoping study is conducted to maximize the power density in boiling water reactors (BWRs) under the constraints of using fuel with traditional materials and cylindrical geometry, and enrichments below 5% to enable its licensability with no changes to present facilities. An optimization search over all other design parameters yields a BWR with high power density (BWR-HD) at a power level of 5000 MW(thermal), equivalent to a 26% uprated Advanced BWR (ABWR), the most recently built version of BWR. The BWR-HD utilizes about the same number of wider fuel assemblies, with 16 × 16 pin arrays and 35% shorter active fuel than the 10 × 10 assemblies of the ABWR. The fuel rod diameter and pitch are also reduced to just over 70% of the ABWR values. Thus, it is possible to increase the power density and specific power by 65% while maintaining the nominal ABWR minimum critical power ratio margin. The optimum core pressure is found to be the same as the current 7.2 MPa. The core exit quality is increased to 19% from the ABWR nominal exit quality of 15%. The pin linear heat generation rate is 20% lower, and the core pressure drop and mass of uranium are 30% lower. The BWR-HD's fuel, modeled with FRAPCON 3.4, showed similar performance to the ABWR pin design. This results in 20% reduced operations and maintenance and capital costs per unit energy, but total fuel cycle cost similar to that of the 18-month ABWR fuel cycle.