ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
J. A. Vitti, P. K. Doherty, G. F. di Lauro, J. C. Gilbertson, D. W. Stuteville
Nuclear Technology | Volume 26 | Number 4 | August 1975 | Pages 442-451
Technical Paper | Fuel | doi.org/10.13182/NT75-A24444
Articles are hosted by Taylor and Francis Online.
A preliminary assessment of proof testing 13 prototypical liquid-metal fast breeder reactor (LMFBR) carbide fuel assemblies in fast test reactor (FTR) driver positions leads to the conclusion that the testing plan is practical and should produce a large amount of data at operating conditions very similar to those that would be found in large commercial carbide-fueled LMFBR s. Three subassembly configurations were designed, each capable of being directly substituted into FTR driver positions and made compatible with the FTR geometry, fuel handling, power, temperature, subassembly flow rates, and pin-bundle pressure drop. Two sodium-bonded designs, one with 91 fuel pins with a 0.370-in. o.d. and the other with 127 fuel pins with a 0.315-in. o.d. per subassembly were established. Calculated peak linear power and peak discharge burnup slightly exceed present commercial design objectives of 30 kW/ft and 73 MWd/kg. Individual assembly power history, flux, and enrichments are represented quite well in the FTR for commercial outer-zone fuel assemblies. Inner-zone operating conditions, however, are not simulated as closely. Impact effects of the proof-test assemblies on FTR operation are judged to be manageable.