ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
High temperature fission chambers engineered for AMR/SMR safety and performance
As the global energy landscape shifts towards safer, smaller, and more flexible nuclear power, Small Modular Reactors (SMRs) and Gen. IV* technologies are at the forefront of innovation. These advanced designs pose new challenges in size, efficiency, and operating environment that traditional instrumentation and control solutions aren’t always designed to handle.
M. R. Louthan, Jr., J. A. Donovan, G. R. Caskey, Jr.
Nuclear Technology | Volume 26 | Number 2 | June 1975 | Pages 192-200
Technical Paper | Material | doi.org/10.13182/NT75-A24418
Articles are hosted by Taylor and Francis Online.
Tritium absorption was determined in Type 304L austenitic stainless steel by analyzing concentration gradients obtained during prolonged exposures to high-pressure gaseous tritium. The calculated tritium diffusivities at temperatures greater than 373 K were shown to be in excellent agreement with the equation where m is the isotopic mass. This equation was previously developed for deuterium in several types of austenitic stainless steels. There was strong evidence for “short-circuit” diffusion paths and a grain size effect on tritium absorption. Such effects are assumed to cause the tritium diffusivities measured for exposures at less than 373 K to be higher than expected from the above equation. Cold work, either prior to or during exposure, significantly increased the effective tritium diffusivity. The increase in tritium diffusivity observed in the samples cold-worked prior to exposure is believed to be caused by preferential (short-circuit) diffusion through strain-induced martensite. The increase in diffusivity in specimens deformed during exposure is believed to be caused by enhanced tritium transport with moving dislocations. This analysis of concentration gradients also shows that tritium permeation rates through austenitic stainless steels will often be significantly less than rates expected from analysis of diffusion-controlled transport properties. This is because of surface barriers that limit tritium absorption, even at pressures to 69 MPa. Solubilities derived from analyses of the concentration gradients were consistently lower than expected and were significantly influenced by specimen surface conditions.