ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
M. R. Louthan, Jr., J. A. Donovan, G. R. Caskey, Jr.
Nuclear Technology | Volume 26 | Number 2 | June 1975 | Pages 192-200
Technical Paper | Material | doi.org/10.13182/NT75-A24418
Articles are hosted by Taylor and Francis Online.
Tritium absorption was determined in Type 304L austenitic stainless steel by analyzing concentration gradients obtained during prolonged exposures to high-pressure gaseous tritium. The calculated tritium diffusivities at temperatures greater than 373 K were shown to be in excellent agreement with the equation where m is the isotopic mass. This equation was previously developed for deuterium in several types of austenitic stainless steels. There was strong evidence for “short-circuit” diffusion paths and a grain size effect on tritium absorption. Such effects are assumed to cause the tritium diffusivities measured for exposures at less than 373 K to be higher than expected from the above equation. Cold work, either prior to or during exposure, significantly increased the effective tritium diffusivity. The increase in tritium diffusivity observed in the samples cold-worked prior to exposure is believed to be caused by preferential (short-circuit) diffusion through strain-induced martensite. The increase in diffusivity in specimens deformed during exposure is believed to be caused by enhanced tritium transport with moving dislocations. This analysis of concentration gradients also shows that tritium permeation rates through austenitic stainless steels will often be significantly less than rates expected from analysis of diffusion-controlled transport properties. This is because of surface barriers that limit tritium absorption, even at pressures to 69 MPa. Solubilities derived from analyses of the concentration gradients were consistently lower than expected and were significantly influenced by specimen surface conditions.