ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
A. B. Reynolds, C. A. Erdman, M. Kirbiyik
Nuclear Technology | Volume 26 | Number 2 | June 1975 | Pages 165-171
Technical Paper | Reactor Siting | doi.org/10.13182/NT75-A24415
Articles are hosted by Taylor and Francis Online.
Methods to calculate bounding values for the generation of fuel vapor during disassembly and during expansion of the fuel after disassembly in a fast-reactor core-disruptive accident were developed. Isentropic expansion of the fuel following disassembly with no fuel mixing before expansion was assumed. It was necessary to develop consistent thermodynamic fuel properties for the analysis. The method was applied to a liquid-metal fast breeder reactor disassembly, first with sodium in the core and then with sodium removed. Bounding values were also compared to lower values obtained by assuming mixing and thermal equilibrium of the fuel prior to expansion. For the bounding calculation with sodium removed, 4.6% of the fuel vaporized when the expanded fuel occupied all of the available volume. This value was reduced to 0.9% when mixing and thermal equilibrium prior to expansion was assumed.