ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Atomic Museum marks 20 years of education
The National Atomic Testing Museum, better known as the Atomic Museum, is celebrating its 20th anniversary this year. Located in Las Vegas, Nev., the museum was established in 2005 to preserve the legacy of the Nevada Test Site, now called the Nevada National Security Sites.
A. B. Reynolds, C. A. Erdman, M. Kirbiyik
Nuclear Technology | Volume 26 | Number 2 | June 1975 | Pages 165-171
Technical Paper | Reactor Siting | doi.org/10.13182/NT75-A24415
Articles are hosted by Taylor and Francis Online.
Methods to calculate bounding values for the generation of fuel vapor during disassembly and during expansion of the fuel after disassembly in a fast-reactor core-disruptive accident were developed. Isentropic expansion of the fuel following disassembly with no fuel mixing before expansion was assumed. It was necessary to develop consistent thermodynamic fuel properties for the analysis. The method was applied to a liquid-metal fast breeder reactor disassembly, first with sodium in the core and then with sodium removed. Bounding values were also compared to lower values obtained by assuming mixing and thermal equilibrium of the fuel prior to expansion. For the bounding calculation with sodium removed, 4.6% of the fuel vaporized when the expanded fuel occupied all of the available volume. This value was reduced to 0.9% when mixing and thermal equilibrium prior to expansion was assumed.