ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
“Robust” interest in Summer’s partially constructed reactors
Santee Cooper is satisfied with the response generated by its initial request for proposals to buy what remains of the Summer-2 and -3 nuclear power plant project in South Carolina. The RFP was issued in January and the application window closed May 5.
P. M. Haas, C. A. Erdman, P. L. Garner, A. B. Reynolds
Nuclear Technology | Volume 26 | Number 2 | June 1975 | Pages 146-164
Technical Paper | Reactor | doi.org/10.13182/NT75-A24414
Articles are hosted by Taylor and Francis Online.
Models were developed for the analysis of noncoherent mixing of fuel and sodium, reduction in two-phase heat transfer between fuel and sodium, and heat loss from sodium to cladding during a fuel-coolant interaction in a liquid-metal fast breeder reactor (LMFBR). The analysis is based on the supposition that fragmentation of molten fuel followed by its relatively rapid intimate mixing with sodium can occur in an LMFBR accident, a supposition still under widespread investigation. Calculations were made for whole-core accidents to evaluate the extent to which reductions in mechanical work might be expected from these phenomena. Although reductions in work were indicated for each phenomenon and reductions were more significant when the several phenomena were considered simultaneously, large order-of-magnitude reductions were not indicated.