ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
Donald E. Burton, Charles M. Snell, Jon B. Bryan
Nuclear Technology | Volume 26 | Number 1 | May 1975 | Pages 65-87
Technical Paper | Nuclear Explosive | doi.org/10.13182/NT75-A24405
Articles are hosted by Taylor and Francis Online.
Two-dimensional computer calculations were performed to model nuclear and high-explosive cratering detonations in saturated Bearpaw clay shale. Three calculations simulated 20-ton energy-yield nitromethane cratering experiments at burial depths of 6, 12.5, and 17 m. Results agreed with experimentally measured peak stresses, peak particle velocities, and crater dimensions. Calculations for a hypothetical nuclear source of the same energy at 12.5 m showed that only half as much kinetic energy was coupled into the mound; a correspondingly smaller crater was predicted. A 10-ton nitromethane source at 12.5 m was also calculated and was found to closely match the nuclear calculation. For these calculations, mound kinetic energy provided a valid criterion for achieving cratering similitude between high-explosive and nuclear events. In this case, similitude was obtained with a nitromethane source having about half the energy of the nuclear source.