ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
Walter A. Stark, Jr.
Nuclear Technology | Volume 26 | Number 1 | May 1975 | Pages 35-45
Technical Paper | Material | doi.org/10.13182/NT75-A24402
Articles are hosted by Taylor and Francis Online.
An analytical treatment for the extraction of diffusion coefficients from gas effusion data considers several cases: (a) diffusion from spheres in which the initial gas distribution results from generation of gas within the sphere; (b) diffusion from spheres in which the initial gas distribution results from incomplete, external infusion; and (c) diffusion from collections of spheres of variable size. For the last, the size distribution functions examined are the square, the normal, and the log-normal distributions. The analytical models for extracting diffusion coefficients for the above initial conditions are developed. The deviations from the results of the simple classical analysis, which assumes uniform particle size and uniform initial gas concentration, are examined. It is shown that errors of factors of 1.5 to 100 can arise if the classical analysis is used.