ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
“Robust” interest in Summer’s partially constructed reactors
Santee Cooper is satisfied with the response generated by its initial request for proposals to buy what remains of the Summer-2 and -3 nuclear power plant project in South Carolina. The RFP was issued in January and the application window closed May 5.
Walter A. Stark, Jr.
Nuclear Technology | Volume 26 | Number 1 | May 1975 | Pages 35-45
Technical Paper | Material | doi.org/10.13182/NT75-A24402
Articles are hosted by Taylor and Francis Online.
An analytical treatment for the extraction of diffusion coefficients from gas effusion data considers several cases: (a) diffusion from spheres in which the initial gas distribution results from generation of gas within the sphere; (b) diffusion from spheres in which the initial gas distribution results from incomplete, external infusion; and (c) diffusion from collections of spheres of variable size. For the last, the size distribution functions examined are the square, the normal, and the log-normal distributions. The analytical models for extracting diffusion coefficients for the above initial conditions are developed. The deviations from the results of the simple classical analysis, which assumes uniform particle size and uniform initial gas concentration, are examined. It is shown that errors of factors of 1.5 to 100 can arise if the classical analysis is used.