ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
G. S. Brunson
Nuclear Technology | Volume 25 | Number 3 | March 1975 | Pages 553-571
Technical Paper | Instrument | doi.org/10.13182/NT75-A24393
Articles are hosted by Taylor and Francis Online.
High-resolution gamma spectrometry is routinely performed for fission product gases in Experimental Breeder Reactor II as a means of detecting and identifying fuel elements with leaks in the cladding. Detailed data accumulated for more than two years of operation has established background concentrations as well as the behavior of these fission products from eight different fuel elements. Different types of fuel have different “fingerprints.” It appears quite easy to distinguish a carbide leaker from either metal or oxide. The distinction between oxide and metal is less clear cut, but our results indicate that identification can be made with some confidence on the magnitude of the signal and on isotopic ratios, particularly the ratio 88Kr/138Xe. Further analysis has been made of the 23Ne activation rate, which is expected to be much higher and far more troublesome in future sodium-cooled fast reactors.