ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
N. D. Dudey, R. J. Popek, R. C. Greenwood, R. G. Helmer, J W Rogers, L. S. Kellogg, W. H. Zimmer
Nuclear Technology | Volume 25 | Number 2 | February 1975 | Pages 294-304
Technical Paper | Material Dosimetry | doi.org/10.13182/NT75-A24370
Articles are hosted by Taylor and Francis Online.
Measurements of the reaction rates for gamma-active fission product and yields from fission of 235U, 238U, 239Pu, and 237Np irradiated in the Coupled Fast Reactivity Measurements Facility and engineering mockup critical assembly neutron fields are reported. The fission products 95Zr, 103Ru, and 140Ba were measured by gamma-ray spectroscopy at four independently calibrated laboratories. It is concluded that each laboratory is capable of measuring absolute reaction rates to an accuracy of less than ±2%. Fission yields of six gamma-active nuclides are reported. The primary objective of this work is to demonstrate the capability of measuring fission rates within fast-reactor environments to accuracies approaching 2.5%. It is shown that foil-activation techniques are capable of this accuracy under ideal conditions. Even greater accuracy is possible for relative measurements which utilize the identical gamma-ray detector and nuclear decay data used to measure the fission yield. The fission yields measured in this study are compared to other measurements, and we find that the ENDF/B, Version IV, yields are, in general, consistent to within ±2% of our results for 235U, 238U, and 239Pu.