ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
N. D. Dudey, R. J. Popek, R. C. Greenwood, R. G. Helmer, J W Rogers, L. S. Kellogg, W. H. Zimmer
Nuclear Technology | Volume 25 | Number 2 | February 1975 | Pages 294-304
Technical Paper | Material Dosimetry | doi.org/10.13182/NT75-A24370
Articles are hosted by Taylor and Francis Online.
Measurements of the reaction rates for gamma-active fission product and yields from fission of 235U, 238U, 239Pu, and 237Np irradiated in the Coupled Fast Reactivity Measurements Facility and engineering mockup critical assembly neutron fields are reported. The fission products 95Zr, 103Ru, and 140Ba were measured by gamma-ray spectroscopy at four independently calibrated laboratories. It is concluded that each laboratory is capable of measuring absolute reaction rates to an accuracy of less than ±2%. Fission yields of six gamma-active nuclides are reported. The primary objective of this work is to demonstrate the capability of measuring fission rates within fast-reactor environments to accuracies approaching 2.5%. It is shown that foil-activation techniques are capable of this accuracy under ideal conditions. Even greater accuracy is possible for relative measurements which utilize the identical gamma-ray detector and nuclear decay data used to measure the fission yield. The fission yields measured in this study are compared to other measurements, and we find that the ENDF/B, Version IV, yields are, in general, consistent to within ±2% of our results for 235U, 238U, and 239Pu.