ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
W. N. McElroy, L. S. Kellogg
Nuclear Technology | Volume 25 | Number 2 | February 1975 | Pages 180-223
Technical Paper | Material Dosimetry | doi.org/10.13182/NT75-A24364
Articles are hosted by Taylor and Francis Online.
The development, design, and operation of nuclear reactors require the accurate prediction of (a) fission rates and burnup for fuels and (b) neutron exposure for neutron-induced property changes for fuels and materials. Goal accuracies of as low as 1% (1σ) have been set for the determination of fission rates, burnup, and neutron fluences for the fast-reactor development program. Based on the discussion of the status of fuels and materials fast-reactor dosimetry data development and testing, attainable goal accuracies presently appear to be in the range of 2 to 5%. Significant progress has been made in achieving high-accuracy measurements through a coordinated interlaboratory effort of integral measurements in low- and high-intensity neutron fields. A few of the major accomplishments of this interlaboratory work are as follows.