ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Clarence E. Lee, Terry C. Wallace
Nuclear Technology | Volume 25 | Number 1 | January 1975 | Pages 124-137
Technical Paper | Material | doi.org/10.13182/NT75-A24355
Articles are hosted by Taylor and Francis Online.
An equilibrium thermodynamical model is developed for the time-dependent interstitial diffusion process in a temperature gradient in binary compounds. A new analytical solution is obtained from a linearization of the model. The linearized solution is in agreement (1 to 3%) with an accurate numerical solution of the nonlinear model and is significantly faster in evaluation. The sensitivity of this solution to parameter variations permits its use in detailed experimental comparisons. This new time-dependent solution makes possible, for the first time, an accurate, simultaneous determination of the chemical interdiffusion coefficients and the effective heat of transport of interstitial compounds, such as refractory carbides and hydrides, from a concentration measurement for short diffusion times.