ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
Donald J. Dudziak, R. A. Krakowski
Nuclear Technology | Volume 25 | Number 1 | January 1975 | Pages 32-55
Technical Paper | Reactor | doi.org/10.13182/NT75-A24347
Articles are hosted by Taylor and Francis Online.
Induced radioactivity and afterheat in fusion reactor blanket structures and magnetic coils are essential inputs for environmental impact studies. These quantities have been calculated for a reference theta-pinch reactor (RTPR) and compared with results reported for other fusion reactors and typical fast fission reactors. Major indepen-dent variables considered in the RTPR analysis were structural material (Nb—1% Zr, V—20% Ti), 14.1-MeV neutron wall loading (0.2 to 6.7 MW/m2), operating time (1 to 20 yr) and time after shutdown (0 to 30 000 yr). For a given operating time large radioactivity contributions from 95Nb render higher [Ci/W(th)J and {Ci/[W(th)yr]} values at higher wall loadings and <1 yr after shutdown. At long times after shutdown this dependence is reversed and represents an advantage relative to long-term radwaste storage. Activity from V— 20% Ti is insensitive to wall loading or operating time. For either material, afterheat power densities are about two orders of magnitude lower than for fission reactors.