ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
Donald J. Dudziak, R. A. Krakowski
Nuclear Technology | Volume 25 | Number 1 | January 1975 | Pages 32-55
Technical Paper | Reactor | doi.org/10.13182/NT75-A24347
Articles are hosted by Taylor and Francis Online.
Induced radioactivity and afterheat in fusion reactor blanket structures and magnetic coils are essential inputs for environmental impact studies. These quantities have been calculated for a reference theta-pinch reactor (RTPR) and compared with results reported for other fusion reactors and typical fast fission reactors. Major indepen-dent variables considered in the RTPR analysis were structural material (Nb—1% Zr, V—20% Ti), 14.1-MeV neutron wall loading (0.2 to 6.7 MW/m2), operating time (1 to 20 yr) and time after shutdown (0 to 30 000 yr). For a given operating time large radioactivity contributions from 95Nb render higher [Ci/W(th)J and {Ci/[W(th)yr]} values at higher wall loadings and <1 yr after shutdown. At long times after shutdown this dependence is reversed and represents an advantage relative to long-term radwaste storage. Activity from V— 20% Ti is insensitive to wall loading or operating time. For either material, afterheat power densities are about two orders of magnitude lower than for fission reactors.