ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
J. M. Matuszek, C. J. Paperiello
Nuclear Technology | Volume 27 | Number 3 | November 1975 | Pages 514-522
Technical Paper | Analysis | doi.org/10.13182/NT75-A24322
Articles are hosted by Taylor and Francis Online.
The procedure described in the U.S. Atomic Energy Commission Regulatory Guide 4.3, which is intended to keep 131I levels in milk “as low as practicable, ” does not properly account for all sources of analytical error that can occur in a low-level radiochemical procedure. Inaccurate chemical recovery factors due to large amounts of stable iodine in milk and incomplete evaluation of detector background fluctuations are the sources of largest error. Significant errors are also contributed in incorrect application of factors for protein-bound iodine and counting efficiency. Ambient levels of 131I contribute to difficulties in evaluating the local impact of any reactor. Use of a beta/gamma coincidence system for counting 131I, measurement of the stable iodine in milk samples and collection of control samples remote from any site are among the recommendations provided to ensure compliance with the Regulatory Guides.