ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
A. De Volpi, R. J. Pecina, R. T. Daly, D. J. Travis, R. R. Stewart, E. A. Rhodes
Nuclear Technology | Volume 27 | Number 3 | November 1975 | Pages 449-487
Technical Paper | Instruments | doi.org/10.13182/NT75-1
Articles are hosted by Taylor and Francis Online.
The fast-neutron hodoscope detects fuel motion within test samples inserted in the center of the Transient Reactor Test Facility (TREAT) reactor core. The hodoscope system has been built to support the U.S. Energy Research and Development Administration nuclear reactor safety testing program in which fuel motion is induced under simulated hypothetical conditions. Optical detection methods cannot be used due to opacity of fuel capsules and sodium coolant required in the tests for the sodium-cooled fast breeder reactor program. The hodoscope system includes components necessary to acquire, store, decode, and process the collected data. An area at the test fuel plane 5.7 cm (horizontal) × 52 cm (vertical) is viewed through 334 slots in a steel collimator by an array of 334 Hornyak button fast-neutron detectors. Collimator and detectors are external to the reactor. Horizontal and vertical spatial resolution of fuel pin motion as small as 0.25 and 8 mm, respectively, with a signal-to-background ratio of 7, can be achieved. Test samples can be single- or multipin assemblies enclosed in autoclaves or flowing sodium loops. When a 7-pin cluster is inserted in a flowing sodium loop, horizontal spatial resolution of fuel motion deteriorates to ∼6 mm and the signal-to-background ratio for any one of the pins is reduced to ∼2 (as much as 5 cm of material radially surrounds the fuel pins in this case). Transients at TREAT typically range from 20 to 20 000 MW when the hodoscope is used. To satisfy test objectives, data must be recorded from each detector at count rates up to 2 million/ sec each, time-resolved down to millisecond intervals. This is accomplished in a relatively reliable and inexpensive manner by displaying counts from each detector sequentially in binary code on a lamp panel, which is photographed by a high-speed framing camera, producing a film record of the transient test.