ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
A. De Volpi, R. J. Pecina, R. T. Daly, D. J. Travis, R. R. Stewart, E. A. Rhodes
Nuclear Technology | Volume 27 | Number 3 | November 1975 | Pages 449-487
Technical Paper | Instruments | doi.org/10.13182/NT75-1
Articles are hosted by Taylor and Francis Online.
The fast-neutron hodoscope detects fuel motion within test samples inserted in the center of the Transient Reactor Test Facility (TREAT) reactor core. The hodoscope system has been built to support the U.S. Energy Research and Development Administration nuclear reactor safety testing program in which fuel motion is induced under simulated hypothetical conditions. Optical detection methods cannot be used due to opacity of fuel capsules and sodium coolant required in the tests for the sodium-cooled fast breeder reactor program. The hodoscope system includes components necessary to acquire, store, decode, and process the collected data. An area at the test fuel plane 5.7 cm (horizontal) × 52 cm (vertical) is viewed through 334 slots in a steel collimator by an array of 334 Hornyak button fast-neutron detectors. Collimator and detectors are external to the reactor. Horizontal and vertical spatial resolution of fuel pin motion as small as 0.25 and 8 mm, respectively, with a signal-to-background ratio of 7, can be achieved. Test samples can be single- or multipin assemblies enclosed in autoclaves or flowing sodium loops. When a 7-pin cluster is inserted in a flowing sodium loop, horizontal spatial resolution of fuel motion deteriorates to ∼6 mm and the signal-to-background ratio for any one of the pins is reduced to ∼2 (as much as 5 cm of material radially surrounds the fuel pins in this case). Transients at TREAT typically range from 20 to 20 000 MW when the hodoscope is used. To satisfy test objectives, data must be recorded from each detector at count rates up to 2 million/ sec each, time-resolved down to millisecond intervals. This is accomplished in a relatively reliable and inexpensive manner by displaying counts from each detector sequentially in binary code on a lamp panel, which is photographed by a high-speed framing camera, producing a film record of the transient test.