ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
James E. Ayer, Donald R. Schmitt
Nuclear Technology | Volume 27 | Number 3 | November 1975 | Pages 442-448
Technical Paper | Instrument | doi.org/10.13182/NT75-A24317
Articles are hosted by Taylor and Francis Online.
A gamma-ray absorptometer system used to determine the density distribution in nuclear fuel rods was designed, assembled, and operated. The absorptometer emits a collimated beam from an irradiated thulium source that is transmitted through a rotating fuel rod. The photons in the attenuated beam are counted and the counts are recorded on teletype tape. The tape output for each fuel rod inspected is used to punch counting data into card form. Data cards from a series of fuel rods are positioned in a FORTRAN-language source program. A computer then calculates and prints such information as the standard deviation due to counting and to density variations; the maximum, minimum, and average counts; and the density equivalent of each count. Calculated density is then programmed into an x-y plotter and displayed versus rod length. The system was found to be sensitive to changes of <1% of theoretical density with 95% confidence of detecting changes >2% of theoretical. The design objectives of compactness, ease of operating, and amenability to use of modern computational techniques were achieved.