ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
J. A. Horak, T. H. Blewitt
Nuclear Technology | Volume 27 | Number 3 | November 1975 | Pages 416-438
Technical Paper | Material | doi.org/10.13182/NT75-A24315
Articles are hosted by Taylor and Francis Online.
The concentrations of lattice point defects produced by thermal-neutron and fast-neutron irradiation of copper, nickel, iron, titanium, and palladium at 4.5 K have been measured resisto-metrically, and the values are compared with the theoretically predicted values. For thermal-neutron irradiation the ratio of the predicted to measured concentration of defects ranged from a minimum of 1.0 for titanium to a maximum of 4.5 for palladium; for fast-neutron irradiation this ratio ranged from 2.3 for titanium to 6.5 for copper. On postirradiation is ochronal annealing no stage II or V are present in copper after thermal-neutron irradiation, but both these stages are present after fast-neutron irradiation. Both nickel and titanium exhibit more than 100% recovery, super-recovery, after thermal-neutron irradiation. The super-recovery is attributed to the irradia-tion-induced supersaturation of vacancies that provide the enhanced diffusion required for the precipitation of impurity atoms from the lattice. Little or no enhanced diffusion is observed after fast-neutron irradiation of nickel and titanium.