ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
J. A. Horak, T. H. Blewitt
Nuclear Technology | Volume 27 | Number 3 | November 1975 | Pages 416-438
Technical Paper | Material | doi.org/10.13182/NT75-A24315
Articles are hosted by Taylor and Francis Online.
The concentrations of lattice point defects produced by thermal-neutron and fast-neutron irradiation of copper, nickel, iron, titanium, and palladium at 4.5 K have been measured resisto-metrically, and the values are compared with the theoretically predicted values. For thermal-neutron irradiation the ratio of the predicted to measured concentration of defects ranged from a minimum of 1.0 for titanium to a maximum of 4.5 for palladium; for fast-neutron irradiation this ratio ranged from 2.3 for titanium to 6.5 for copper. On postirradiation is ochronal annealing no stage II or V are present in copper after thermal-neutron irradiation, but both these stages are present after fast-neutron irradiation. Both nickel and titanium exhibit more than 100% recovery, super-recovery, after thermal-neutron irradiation. The super-recovery is attributed to the irradia-tion-induced supersaturation of vacancies that provide the enhanced diffusion required for the precipitation of impurity atoms from the lattice. Little or no enhanced diffusion is observed after fast-neutron irradiation of nickel and titanium.