ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
W. Pfeiffer, J. R. Brown, A. C. Marshall
Nuclear Technology | Volume 27 | Number 3 | November 1975 | Pages 352-375
Technical Paper | Reactor | doi.org/10.13182/NT75-A24310
Articles are hosted by Taylor and Francis Online.
Pulsed-neutron experiments were performed on the 330-MW Fort St. Vrain high-temperature gas-cooled reactor (HTGR) to determine the reactivity of the core for various control rod configurations while the reactor was still subcritical. For all configurations the reactivity was inferred from the in-hour equation using the measured decay constant and a calculated generation time. For the configurations near critical, both the reactivity and generation time were determined using the extrapolated area-ratio method. The originally calculated (i.e., predicted) reactivities agreed poorly with those inferred from the experiments. However, by adding 5 ppm of boron to the reflector calculational model, the calculated generation time was significantly reduced. This brought the inferred reactivity into good agreement with that calculated for all control rod configurations. This emphasizes the dependence of the interpretation of pulsed-neutron experiments on calculations and the importance of the reflector in a large HTGR. Novel aspects of these experiments included the following: extensive two-dimensional computer simulations were performed prior to the experiments to determine the optimum source and detector locations; the neutron generation time was measured near critical by pulsing two different control rod configurations; all the data were fit by least squares to a sum of exponentials corresponding to one or two prompt modes and six delayed sub-modes; and an objective procedure using “tornado plots ” was developed to determine the starting channel for the least-squares analysis.