ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
C. William Savery, Y. S. Huang, George M. Kowal
Nuclear Technology | Volume 27 | Number 3 | November 1975 | Pages 327-336
Technical Paper | Reactor | doi.org/10.13182/NT75-A24308
Articles are hosted by Taylor and Francis Online.
A computer code, MNODE, for predicting the state histories and inventories of an inert gas and water liquid and vapor flowing in a zoned containment has been developed. It employs a model that describes the unsteady flow and thermodynamics of two-phase two-component mixtures flowing among 12 connected control volumes. This calculational model can be applied to problems of hypothetical high-pressure primary coolant, feed water, or steam line ruptures in such structures as nuclear containments, tunnels, or auxiliary buildings. In comparison with previously reported zoned containment computation models, this model rigorously treats the thermodynamics of two-phase two-component mixtures of water and an inert gas, is provided with several flow model options including an inertia flow equation, and is demonstrated with substantial verification. Predictions are compared with the results of an analytical gas dynamic problem, semiscale blowdown experiments, and solutions to a subcompartment analysis standard problem by other computer codes in use within the nuclear industry.