ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
V. Marinelli, A. Pellei, P. Vallero, C. Vitanza
Nuclear Technology | Volume 27 | Number 2 | October 1975 | Pages 207-215
Technical Paper | Reactor | doi.org/10.13182/NT75-A24287
Articles are hosted by Taylor and Francis Online.
The (X, LB) correlation, which is currently used to predict the critical heat flux (CHF) onset in simple and complex geometries under a steady-state regime, is capable of a dynamic interpretation. The two-phase flow mean particles, climbing the channel at linear velocities corresponding to their mass velocity and local densities, reach the CHF conditions—i.e., zero thickness of the liquid film on the rod—when they have traveled a certain distance and have achieved a certain quality. According to this model, the CHF would be predicted in transient condition, when the boiling length and the mass velocities change with space and time, by applying the steady-state CHF (X, LB) correlation to the actual paths of the mean fluid particles. The calculations performed in comparison of the “Lagrangian point of view,” outlined above by means of the DOLCE computer code, with the local space-time approach of the “Eulerian point of view” indicate that the two methods give substantially equivalent results and predict satisfactorily the onset of the transient CHF for the Centro Informazioni Studi Esperienze annuli experimental data and General Electric Company 16-rod bundles data under typical boiling water reactor transients, including loss-of-coolant accident simulations.