ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Jeffrey King guides new nuclear program at Tennessee Tech
Jeffrey King
In August, the College of Engineering at Tennessee Technological University welcomed ANS member Jeffrey C. King as the founding director of its new nuclear engineering program. King, a leading force within the American Nuclear Society and a space enthusiast, is tasked with developing a new Department of Nuclear Engineering at Tennessee Tech after a more than 20-year absence of such a program at the university.
King comes to Tennessee Tech from the Colorado School of Mines, where he had been a professor of metallurgical and materials engineering for 15 years, leading the development of the nuclear science and engineering program and serving as director of the Nuclear Science and Engineering Research Center.
L. San-Felice, R. Eschbach, P. Bourdot
Nuclear Technology | Volume 184 | Number 2 | November 2013 | Pages 217-232
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT12-121
Articles are hosted by Taylor and Francis Online.
The DARWIN package, developed by the CEA and its French partners (AREVA and EDF), provides the parameters required for fuel cycle applications: fuel inventory; decay heat; activity; neutron, gamma, alpha, and beta sources and spectra; and radiotoxicity. This paper presents the DARWIN2.3 experimental validation for fuel inventory and decay heat calculations on pressurized water reactors (PWRs). To validate this code system for spent fuel inventory, a large program has been undertaken, based on spent fuel chemical assays. This paper deals with the experimental validation of DARWIN2.3 for PWR uranium oxide and mixed oxide (MOX) fuel inventory calculation, focused on the isotopes involved in burnup credit applications and decay heat computations. The calculation-to-experiment ratio [(C - E)/1] discrepancies are calculated with the latest European evaluation file JEFF-3.1.1 associated with the Santamarina-Hfaiedh energy mesh. An overview of the tendencies is obtained on a complete range of burnup from 10 to 85 GWd/tonne (10 to 60 GWd/tonne for MOX fuel). The experimental validation of the DARWIN2.3 package for decay heat calculation is performed using calorimetric measurements carried out at the Swedish interim spent fuel storage facility, Clab, for PWR assemblies, covering large burnup (20 to 50 GWd/tonne) and cooling time (10 to 30 year) ranges.