ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
L. San-Felice, R. Eschbach, P. Bourdot
Nuclear Technology | Volume 184 | Number 2 | November 2013 | Pages 217-232
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT12-121
Articles are hosted by Taylor and Francis Online.
The DARWIN package, developed by the CEA and its French partners (AREVA and EDF), provides the parameters required for fuel cycle applications: fuel inventory; decay heat; activity; neutron, gamma, alpha, and beta sources and spectra; and radiotoxicity. This paper presents the DARWIN2.3 experimental validation for fuel inventory and decay heat calculations on pressurized water reactors (PWRs). To validate this code system for spent fuel inventory, a large program has been undertaken, based on spent fuel chemical assays. This paper deals with the experimental validation of DARWIN2.3 for PWR uranium oxide and mixed oxide (MOX) fuel inventory calculation, focused on the isotopes involved in burnup credit applications and decay heat computations. The calculation-to-experiment ratio [(C - E)/1] discrepancies are calculated with the latest European evaluation file JEFF-3.1.1 associated with the Santamarina-Hfaiedh energy mesh. An overview of the tendencies is obtained on a complete range of burnup from 10 to 85 GWd/tonne (10 to 60 GWd/tonne for MOX fuel). The experimental validation of the DARWIN2.3 package for decay heat calculation is performed using calorimetric measurements carried out at the Swedish interim spent fuel storage facility, Clab, for PWR assemblies, covering large burnup (20 to 50 GWd/tonne) and cooling time (10 to 30 year) ranges.